热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python|Pandasdataframe.resample()

Python|Pandasdataframe.resample()

Python | Pandas data frame . resample()

原文:https://www . geesforgeks . org/python-pandas-data frame-resample/

Python 是进行数据分析的优秀语言,主要是因为以数据为中心的 python 包的奇妙生态系统。 【熊猫】 就是其中一个包,让导入和分析数据变得容易多了。

熊猫 **dataframe.resample()**功能主要用于时间序列数据。
时间序列是按时间顺序索引(或列出或绘制)的一系列数据点。最常见的是,时间序列是在连续等间隔的时间点上取得的序列。这是一种方便的时间序列频率转换和重采样方法。对象必须具有类似日期时间的索引(日期时间索引、周期索引或时间增量索引),或者将类似日期时间的值传递给 on 或 level 关键字。

语法: DataFrame.resample(规则,how=None,axis=0,fill_method=None,closed=None,label=None,约定='start ',kind=None,loffset=None,limit=None,base=0,on=None,level=None)

参数:
规则:表示目标转换的偏移字符串或对象
轴: int,可选,默认 0
closed : {【右】、【左】}
标签: {【右】、【左】}
约定:仅用于 PeriodIndex,控制是使用规则
的开始还是结束 loffset : 调整例如,对于“5 分钟”频率,基数可以从 0 到 4。默认为 0。
on : 对于数据帧,使用列代替索引进行重采样。列必须类似于日期时间。
级别:对于多索引,用于重采样的级别(名称或编号)。级别必须类似于日期时间。

重采样根据实际数据生成唯一的采样分布。我们可以应用各种频率对时间序列数据进行重新采样。这是分析领域非常重要的技术。
最常用的时间序列频率为–
W:周频率
T5】M:月末频率
SM : 半月末频率(15 日和月末)
Q : 季度末频率

还有许多其他类型的时间序列频率可用。让我们看看如何将这些时间序列频率应用于数据并对其进行重新采样。

有关代码中使用的 CSV 文件的链接,请单击此处的

这是苹果公司从(13-11-17)到(13-11-18)一年的股价数据

示例#1: 按月频率对数据进行重采样

# importing pandas as pd
import pandas as pd
# By default the "date" column was in string format,
# we need to convert it into date-time format
# parse_dates =["date"], converts the "date" 
# column to date-time format. We know that 
# resampling works with time-series data only
# so convert "date" column to index
# index_col ="date", makes "date" column, the index of the data frame
df = pd.read_csv("apple.csv", parse_dates =["date"], index_col ="date")
# Printing the first 10 rows of dataframe
df[:10]

# Resampling the time series data based on months
# we apply it on stock close price
# 'M' indicates month
monthly_resampled_data = df.close.resample('M').mean()
# the above command will find the mean closing price
# of each month for a duration of 12 months.
monthly_resampled_data

输出:

示例#2: 按周频率对数据进行重采样

# importing pandas as pd
import pandas as pd
# We know that resampling works with time-series data
# only so convert "date" column to index
# index_col ="date", makes "date" column.
df = pd.read_csv("apple.csv", parse_dates =["date"], index_col ="date")
# Resampling the time series data based on weekly frequency
# we apply it on stock open price 'W' indicates week
weekly_resampled_data = df.open.resample('W').mean()
# find the mean opening price of each week 
# for each week over a period of 1 year.
weekly_resampled_data

输出:

示例#3: 按季度频率对数据进行重采样

# importing pandas as pd
import pandas as pd
# We know that resampling works with time-series
#  data only so convert our "date" column to index
# index_col ="date", makes "date" column
df = pd.read_csv("apple.csv", parse_dates =["date"], index_col ="date")
# Resampling the time series data
#  based on Quarterly frequency
# 'Q' indicates quarter
Quarterly_resampled_data = df.open.resample('Q').mean()
# mean opening price of each quarter
# over a period of 1 year.
Quarterly_resampled_data

输出:


推荐阅读
  • 深入理解 Java 控制结构的全面指南 ... [详细]
  • 在Ubuntu系统中配置Python环境变量是确保项目顺利运行的关键步骤。本文介绍了如何将Windows上的Django项目迁移到Ubuntu,并解决因虚拟环境导致的模块缺失问题。通过详细的操作指南,帮助读者正确配置虚拟环境,确保所有第三方库都能被正确识别和使用。此外,还提供了一些实用的技巧,如如何检查环境变量配置是否正确,以及如何在多个虚拟环境之间切换。 ... [详细]
  • 本文探讨了利用Python实现高效语音识别技术的方法。通过使用先进的语音处理库和算法,本文详细介绍了如何构建一个准确且高效的语音识别系统。提供的代码示例和实验结果展示了该方法在实际应用中的优越性能。相关文件可从以下链接下载:链接:https://pan.baidu.com/s/1RWNVHuXMQleOrEi5vig_bQ,提取码:p57s。 ... [详细]
  • 本文详细介绍了使用 Python 进行 MySQL 和 Redis 数据库操作的实战技巧。首先,针对 MySQL 数据库,通过 `pymysql` 模块展示了如何连接和操作数据库,包括建立连接、执行查询和更新等常见操作。接着,文章深入探讨了 Redis 的基本命令和高级功能,如键值存储、列表操作和事务处理。此外,还提供了多个实际案例,帮助读者更好地理解和应用这些技术。 ... [详细]
  • 本文介绍了如何在iOS平台上使用GLSL着色器将YV12格式的视频帧数据转换为RGB格式,并展示了转换后的图像效果。通过详细的技术实现步骤和代码示例,读者可以轻松掌握这一过程,适用于需要进行视频处理的应用开发。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 本文详细探讨了MySQL数据库实例化参数的优化方法及其在实例查询中的应用。通过具体的源代码示例,介绍了如何高效地配置和查询MySQL实例,为开发者提供了有价值的参考和实践指导。 ... [详细]
  • 本文介绍了UUID(通用唯一标识符)的概念及其在JavaScript中生成Java兼容UUID的代码实现与优化技巧。UUID是一个128位的唯一标识符,广泛应用于分布式系统中以确保唯一性。文章详细探讨了如何利用JavaScript生成符合Java标准的UUID,并提供了多种优化方法,以提高生成效率和兼容性。 ... [详细]
  • 在 Kubernetes 中,Pod 的调度通常由集群的自动调度策略决定,这些策略主要关注资源充足性和负载均衡。然而,在某些场景下,用户可能需要更精细地控制 Pod 的调度行为,例如将特定的服务(如 GitLab)部署到特定节点上,以提高性能或满足特定需求。本文深入解析了 Kubernetes 的亲和性调度机制,并探讨了多种优化策略,帮助用户实现更高效、更灵活的资源管理。 ... [详细]
  • Python 中 json.dumps() 和 json.loads() 的使用方法详解——Python 面试与 JavaScript 面试必备知识
    在 Python 中,`json.dumps()` 和 `json.loads()` 是处理 JSON 数据的核心函数。`json.dumps()` 用于将字典或其他可序列化对象转换为 JSON 格式的字符串,而 `json.loads()` 则用于将 JSON 字符串解析为 Python 对象。本文详细介绍了这两个函数的使用方法及其在 Python 和 JavaScript 面试中的重要性,帮助读者掌握这些关键技能。 ... [详细]
  • 利用Python进行学生学业表现评估与成绩预测分析
    利用Python进行学生学业表现评估与成绩预测分析 ... [详细]
  • Squaretest:自动生成功能测试代码的高效插件
    本文将介绍一款名为Squaretest的高效插件,该工具能够自动生成功能测试代码。使用这款插件的主要原因是公司近期加强了代码质量的管控,对各项目进行了严格的单元测试评估。Squaretest不仅提高了测试代码的生成效率,还显著提升了代码的质量和可靠性。 ... [详细]
  • Python进阶笔记:深入理解装饰器、生成器与迭代器的应用
    本文深入探讨了Python中的装饰器、生成器和迭代器的应用。装饰器本质上是一个函数,用于在不修改原函数代码和调用方式的前提下为其添加额外功能。实现装饰器需要掌握闭包、高阶函数等基础知识。生成器通过 `yield` 语句提供了一种高效生成和处理大量数据的方法,而迭代器则是一种可以逐个访问集合中元素的对象。文章详细解析了这些概念的原理和实际应用案例,帮助读者更好地理解和使用这些高级特性。 ... [详细]
  • 在前文探讨了Spring如何为特定的bean选择合适的通知器后,本文将进一步深入分析Spring AOP框架中代理对象的生成机制。具体而言,我们将详细解析如何通过代理技术将通知器(Advisor)中包含的通知(Advice)应用到目标bean上,以实现切面编程的核心功能。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
author-avatar
手机用户2502870065
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有